Theme: Physics

Abstract No:. PTCOG-AO2025-ABS-0038

Abstract Title: Proton Therapy for Thoracoabdominal Tumors: Strategies for

Mitigating Respiratory Motion Effects —Tongji Experience

Author Names: Yanhong Zheng*; Weiqing Wu,; Renchao Zheng; Zhen Tao.

Proton Center, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Hubei, China

*yhzheng@tjh.tjmu.edu.cn

1900

Background / Aims:

Proton therapy is particularly suitable for treating thoracoabdominal malignancies with the distinct physical advantages of the Bragg peak. However, its precision is compromised by respiration motioninduced uncertainties in proton range. study summarizes the clinical experience and stratified management strategies for thoracoabdominal proton therapy at the Tongji Proton Center, with a specific focus on evaluating the feasibility optical of surface-guided voluntary breath-hold techniques in proton treatment delivery.

Subjects and Methods: Free Breath (FB) 4DCT BH CT × 2 BH CT × 2 BH CT + 6 BH MR Planning ITV POverride Repainting IN/EX-hale evaluation Treatment Tx w/ Surface Monitor BH Tx w/ Surface Guide Free Breath (FB) 4DCT w/ Abdominal Compression ITV P Override Repainting IN/EX-hale evaluation BH Tx w/ Surface Monitor

Fig.1 Workflow of respiratory management This analysis included 25 patients treated with voluntary breath-hold (18 proton-therapy with hypofractionation), all processed via the stratified workflow in Figure 1. Positional reproducibility of tumors and OARs was assessed by comparing QACT with planning while CT, dosimetric reproducibility was comparing **QACT**evaluated by recalculated doses and nominal plan doses.

Result:

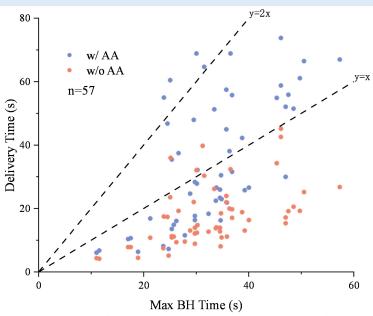


Fig.2 Correlation Between Beam Delivery Time and Breath-hold Duration

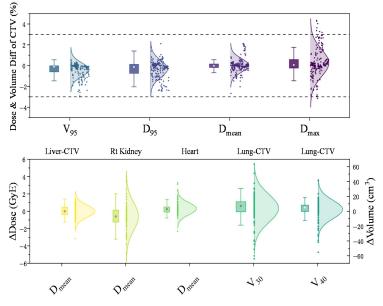


Fig.3 Box plots of dose change of QACT plan parameters with respect to the nominal plan

As shown in Fig.2, 54 out of 57 fields were delivered within a single breathhold, which may potentially mitigate the dose heterogeneity (e.g., cold and hot spots) arising from intra-fraction target displacement during multiple breath-holds. Furthermore, the results in Fig.3 demonstrate notable interfraction reproducibility of the optical surface-guided breath-hold technique in proton therapy.